If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40+3x+10=180
We move all terms to the left:
x^2+40+3x+10-(180)=0
We add all the numbers together, and all the variables
x^2+3x-130=0
a = 1; b = 3; c = -130;
Δ = b2-4ac
Δ = 32-4·1·(-130)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-23}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+23}{2*1}=\frac{20}{2} =10 $
| 3x-17=-3x+37 | | (3x+9)=6(2x-5)=7x | | -8=4×15+b | | 9(x)-12=30 | | 49-9=-4z-4z | | 2x(x+4)=(x-3)² | | -5(-3-n)=10 | | -2(-9w+8)-8w=2(w-9) | | a. | | 12m+112=1000 | | (2)2x+10=44 | | 24=3x6 | | 7x(8+1)=(7x)+(7x) | | 9x+10+11x=180 | | (10k-16)+11=-2 | | 2.6515=0.85^x | | 4-(-6)+5x=5x | | 5.7y+11.8=13y+29.4 | | 3(x+4)=12x-6 | | -2=6×4+x | | 7x-10x=2(x-5) | | -6y+12=-2(4y+3) | | -20=2c | | 8x-6+12=3x | | 61+x=150 | | Y=-3x-31 | | 9n+4=n-12 | | 8x+16=8x-6 | | 1.4x=1.75+2 | | -5(2x-1)+7x=7(x+1) | | 125=10x-1+7x+7 | | 4=-4+v |